
Enhancing NIC Performance for MPI using Processing-in-Memory

Arun Rodrigues, Richard Murphy, Ron Brightwell, and Keith D. Underwood
Sandia National Laboratories

�
P.O. Box 5800, MS-1110

Albuquerque, NM 87185-1110�
afrodri, rcmurph, rbbright, kdunder � @sandia.gov

Abstract

Processing-in-Memory (PIM) technology encompasses a
range of research leveraging a tight coupling of memory
and processing. The most unique features of the technology
are extremely wide paths to memory, extremely low memory
latency, and wide functional units. Many PIM researchers
are also exploring extremely fine-grained multi-threading
capabilities. This paper explores a mechanism for leverag-
ing these features of PIM technology to enhance commod-
ity architectures in a seemingly mundane way: accelerat-
ing MPI. Modern network interfaces leverage simple pro-
cessors to offload portions of the MPI semantics. partic-
ularly the management of posted receive and unexpected
message queues. Without adding cost or increasing clock
frequency, using PIMs in the network interface can enhance
performance. The results are a significant decrease in la-
tency and increase in small message bandwidth, particu-
larly when long queues are present.

1. Introduction

Processing-in-Memory (PIM) [5, 13] (or Intelli-
gent RAM [19]) is a novel technology that is receiv-
ing widespread attention in high-performance computing.
PIMs merge a processor with memory to avoid the impend-
ing memory wall [28]. Researchers envision a future with a
sea of memory with processors scattered throughout [13, 5].
Those processors would be simple with wide paths to mem-
ory and wide functional units [4]. They would be inherently
multithreaded [23] with extremely lightweight thread con-
text and thread invocation mechanisms. This paper,
however, is not about revolutionizing supercomputer ar-
chitecture with PIMs. It is not going to discuss how

� Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of En-
ergy’s National Nuclear Security Administration under contract DE-
AC04-94AL85000.

PIMs may completely change the memory system. In-
stead, this paper focuses on how PIMs could transform
supercomputers in the least expected of places: the net-
work interface.

Modern network interfaces offload much of the MPI pro-
cessing [1, 20]. This is a natural migration in light of re-
search indicating that network overhead (the time the appli-
cation processor spends handling messages traffic [10]) has
the single largest impact on application performance [15].
Unfortunately, the work that is offloaded includes travers-
ing the posted receive queue, which can grow quite long [3].
As the queue grows, the time to traverse it also grows due
to the inherently low clock speed and simplicity of the pro-
cessor on the NIC [25]. Thus, another important measure
of network performance, the gap (time between when new
messages can be initiated [10]) begins to grow. Attempts to
minimize this traversal time through hashing have been con-
sidered and abandoned by vendors due to the increase in list
insertion time and the existence of wildcarded calls to MPI
in several codes.

An alternative solution is to build a better NIC proces-
sor. Such a processor needs to decrease the time to search
a linked list to reduce the latency of messages. It needs to
overlap multiple searches of the list to increase throughput.
It needs to... look a lot like a PIM. A PIM has low latency
access to memory, so it traverses linked lists well. Memory
access is wide and can be operated on with a wide ALU, so
multiple list entries can be searched rapidly with a handful
of instructions. The PIM is multi-threaded with extremely
fine-grained locking support, so simultaneous queue traver-
sals can be used to leverage the increase in bandwidth. Best
of all, PIMs are simple, so the area and the NRE devoted to
them will be minimal. In short, PIMs are a natural fit to the
needs of the embedded processor on the NIC.

This paper explores the details of how a PIM can ac-
celerate NIC-based MPI processing. A model of a modern
NIC was created as a baseline for comparison. In the stan-
dard NIC, a PowerPC 440 embedded processor was used.
A PIM based on similar technology was also used. An MPI



implementation was modified to leverage the wide memory
accesses, the wide ALU operations, and the multithreading
capabilities of the PIM. The result was a dramatic decrease
in message latency in the presence of long queues and an in-
crease in the achievable throughput.

In Section 2, related work is described. Following that
the hardware (Section 3) and MPI implementation (Sec-
tion 4) are described. The evaluation methodology is de-
scribed in Section 5 and the results are presented in Sec-
tion 6. The paper wraps up with conclusions and future
work in Section 7.

2. Related Work

This paper explores PIM-based acceleration of match
processing for the MPI posted receive queue. This is a natu-
ral progression of previous work on utilizing PIM hardware
to support MPI and exploring those areas of MPI that may
benefit from hardware assisted processing. We have previ-
ously addressed issues in supporting MPI functionality for
a PIM-based system architecture [22]. We have also pro-
posed augmenting a traditional network interface with cus-
tom hardware for accelerating MPI queue processing [26].
To our knowledge, there is no previous work on strategies
for optimizing MPI queue processing in published research.

In contrast, a significant amount of previous work is
aimed at utilizing programmable network interface hard-
ware, such as Quadrics [20] and Myrinet [2], for optimizing
MPI performance. These optimizations include offloading
MPI protocol processing [24, 14], using hardware capabil-
ities for efficient data movement (especially collective op-
erations [7, 17]), and using scatter/gather functionality for
handling non-contiguous data transfers [27].

As a processing technology, PIM has been examined for
use in supercomputing for almost a decade[13, 23, 18, 5, 4].
It has also been examined in detail in the context of embed-
ded systems[12]. However, to date, we know of no analysis
of PIMs used to enhance NIC performance. Given the high
bandwidth access to memory made possible by a PIM, com-
bined with the throughput-oriented (latency tolerant) archi-
tecture proposed in the context of supercomputing, acceler-
ating the performance of MPI processing seems like a natu-
ral match.

3. Hardware Overview

The baseline NIC (shown in Figure 1) is representa-
tive of numerous modern network interfaces, including the
Quadrics [20] network, the Myrinet network [2], and the
Red Storm system developed by Cray and Sandia [1, 9].
These NICS interface to the network fabric on one side and
a high-performance interface to the microprocessor (e.g.

HyperTransport or PCI-Express) on the other. What deliv-
ers the high-performance is the logic between the two inter-
faces: two DMA engines (one in each direction) driven by
local processing on the network interface. The processing
on the network interface is a microprocessor (or two) with
either internal RAM (as shown in Figure 1(a) and found in
Red Storm [1, 9]) or external RAM (as is typical in com-
modity networks like Myrinet [2] and Quadrics [20]).

3.1. PIM-Based NIC Enhancement

Commodity processors are limited by their architecture.
They can only process one input at a time (they are single
threaded), and they have narrow functional units requiring
many instructions to process a single list entry. In contrast,
PIMs can use fine-grain locking and multithreading support
to perform concurrent list walks for multiple messages si-
multaneously. They also have wide functional units that al-
low them to compare multiple list entries simultaneously.
PIMs use reduced core complexity (yielding slightly lower
instruction per cycle (IPC) rate for some workloads) to dra-
matically reduce core size. Thus, PIMs have the potential
to bring significant gains in message latency and message
throughput when the posted receive queue is long.

The proposed modification is shown in Figure 1(b). The
embedded SRAM becomes part of the PIMs and is accessed
in extremely wide words. The PIMs interface to the rest of
the NIC in exactly the same way as a conventional processor
would and have the exact same amount of memory backing
them. A single PIM, however, is much smaller. Thus, it is
possible to include two PIMs. Each of these PIMs has equal
wide access to both memories (contention is now possible)
as indicated by the wide connection between the SRAMs.
Virtually all PIM architectures consider multiple cooperat-
ing PIMs in a single memory, so two PIMs is a reasonable
design point.

3.2. Relative Area Requirements

Silicon is still a precious resource and is the standard
for comparing two NIC designs. It is only fair to compare
two designs if they are of comparable area. Thus, it is criti-
cal to understand the area trade-off when comparing a PIM-
based NIC to a conventional NIC. As the first significant
PIM system to incorporate the essential features examined,
PIM Lite [4] provides the hard data needed for comparison.
Brockman [6] compares the relative area of conventional
processor cores, PIM Lite, and conventional memories in
a process-independent fashion. The 128-bit PIM Lite im-
plementation has an equivalent area to 10.3 KB of SRAM.
Since this paper uses a 256-bit data path, the area is dou-
bled to 20.6 KB of SRAM. Assuming that additional fea-
tures might be desired in the PIM core, we double this esti-



FIFO

FIFO

Rx DMA
EngineFIFOFIFO

Tx DMA
EngineFIFO

To Network

T
o 

H
os

t M
em

or
y

H
ig

h 
Pe

rf
or

m
an

ce
 C

on
ne

ct
io

n

H
eader

DataNetwork
From

New Posted Receives

SRAM
LocalProcessor

(a)

FIFO

FIFO

Rx DMA
EngineFIFOFIFO

Tx DMA
EngineFIFO

To Network

T
o 

H
os

t M
em

or
y

H
ig

h 
Pe

rf
or

m
an

ce
 C

on
ne

ct
io

n

H
eader

DataNetwork
From

PIM

Local
SRAM

PIM

SRAM
Local

New Posted Receives

(b)

Figure 1. A high-performance network inter-
face enhanced with (a) a processor, and (b)
multiple PIMs

mate and add a 4 KB instruction cache to yield a 45.2 KB
SRAM equivalence. The design evaluated here uses two
PIM cores (90.4 KB of SRAM equivalence) and 384K of
SRAM. By comparison, the PowerPC 440 integer core is
equivalent to 33.3 KB of SRAM [6]. It includes 32 KB of
instruction cache and 32 KB of data cache for a total of 97.3
KB of SRAM equivalence. Thus, the PIM solution is only
93% of the area that is required by the PowerPC solution.

4. MPI Implementation

To explore MPI acceleration, a prototype MPI imple-
mentation that was split between the host processor and
the NIC processor was created. A split implementation of
MPI, rather than an implementation over a more general
purpose API, was created to maximize performance. The
prototype MPI implements a subset of MPI-1.2 [16]. With
the exception of MPI Barrier(), only basic point-to-
point communication and basic support functions were im-

MPI Comm rank()
MPI Comm size()
MPI Finalize()
MPI Init() �
MPI Irecv()

MPI Barrier() �

MPI Isend()
MPI Recv() �
MPI Send() �
MPI Wait()

MPI WaitAll() �

Figure 2. Subset of MPI implemented
� functions built from other MPI functions

plemented(Figure 2). Only support for basic MPI Datatypes
is included and MPI COMM WORLD is the only group. The
MPI implementation is roughly 1600 lines of C++ and is
compiled with GNU g++ 3.3.

4.1. Host Software

The host portion of the MPI implementation is
minimal. The three basic communication functions
(MPI Irecv(), MPI Isend(), MPI Wait()) of-
fload virtually all work onto the network interface.
The functions built on top of those as well as the non-
communication functions are implemented on the host.
To perform an MPI Irecv(), the host checks for avail-
able space and posts an item to a queue in the network in-
terface. The network interface manages the posted receive
queue and unexpected message queue. The implementation
of MPI Isend() is similar. It only needs to place infor-
mation about the message to be sent in a queue on the net-
work interface. To implement an MPI Wait, the host spins
on a memory location in host memory.

4.2. NIC-Based MPI Implementation

Most of the work is done by the processor on the NIC.
It manages all NIC resources, drives the DMA engines,
and handles most of the MPI semantics (including progress
and matching). To accomplish this, the NIC maintains five
linked lists of MPI state. The following lists contain re-
quests and the state required to advance them.

� postedRecvQ: Posted receive buffers for incoming
messages to match against

� activeRecvQ: Active receives requiring processing
(i.e. rendezvous requests which need a reply, requests
waiting for a DMA engine, etc.)

� unexpectedQ: List of unexpected messages. Com-
pared to new posted receives.

� unexpectedActiveQ: Active unexpected mes-
sages which must be advanced (i.e. unexpected mes-
sages requiring DMA transfer).



� sendQ: Queue send requests for processing.

The core of the software on the network interface proces-
sor is a loop that continually checks for work. If a new mes-
sage is waiting to be processed, the header is read by the
NIC processor. The posted receive queue is traversed and
the header is compared to each posted receive. Upon find-
ing a match, the processor moves the receive request to the
active list and either a DMA is setup (a short message) or
a rendezvous reply is sent (a long message). If no match is
found, the message is placed on the unexpectedQ, to be
compared to future receives as they are posted.

New send requests cause either a DMA to start (for short
messages) or a rendezvous request to be sent (for long mes-
sages). The send request is then added to the list of active
requests. New receive requests are first compared to the ex-
isting unexpected message queue (unexpectedQ) for a
match. A match causes the message to be copied appropri-
ately or, for long messages, for the data to be requested from
the remote processor. Failure to match the receive with the
unexpectedQ will cause the receive to be placed on the
postedRecvQ.

The processor also checks the active queues
(activeRecvQ and unexpectedActiveQ) for
messages that need to be progressed. Progressing mes-
sages can include such things as providing additional
information to the DMA engine and responding to ren-
dezvous replies. This enables the MPI implementation to
meet the strictest interpretation of the independent progress
rule while using a rendezvous protocol and without involv-
ing a host processor thread. As items on the active queues
complete, the host processor is notified by writing a loca-
tion in host memory.

4.3. PIM Feature Exploitation

PIMs have several features that enable higher performing
NICs. The most prominent of these is the extremely wide
path between the memory and the processor core (256 bits
rather than 32 or 64 bits). This path enables the processor to
load large pieces of data to be matched with a single instruc-
tion. Moreover, PIMs do not have traditional caches, which
typically force several sequential transfers from memory to
cache (regardless of access size) and cause unneeded data
to be loaded along with the requested data.

The second useful feature of PIMs is a wide ALU. Since
PIMs have wide paths between processor and memory, they
provide an ALU that matches that width. Thus, the entire
match (often multiple bytes) can be performed in a smaller
number of instructions. Since MPI matches use relatively
little data, this is a seemingly small advantage; however, a
change in the organization of the list data structures enables
a much more powerful usage of the wide ALU. Figure 3 il-
lustrates this concept.

����
Match Data 2 Other Data 2

Match Data 1 Other Data 1

Match Data 0 Other Data 0

Match Data 15 Other Data 15

Match Data 14 Other Data 14

Match Data 13 Other Data 13

��������

(a)
Comm 0

Tag 0

Src 0

������	�		�	
�


�

������ �
�


Other
Data 13

Comm 13

Tag 13

Src 13

Other
Data 14

Comm 14

Tag 14

Src 14

Other
Data 15

Comm 15

Tag 15

Src 15

Other
Data 0

Other
Data 1

Comm 1

Tag 1

Src 1

Other
Data 2

Comm 2

Tag 2

Src 2

(b)

Figure 3. (a) A conventional data layout; (b) a
PIM data layout

In Figure 3(a), the typical data layout of an MPI posted
receive queue is shown. Memory addresses increase from
right to left and from top to bottom. Although the queue en-
tries are often sequential (due to the way list items are al-
located), that has no impact on this example. If the MPI
match data is 48 bits (16 bits for each of the three fields
— tag, source, and communicator — is sufficient to meet
the specification), then six bytes of each cache line are use-
ful. Since cache lines are 32 (or more) bytes and processors
fetch a full cache line for each cache “miss”, much of the
data retrieved from memory is wasted. Sixteen memory ac-
cesses would be required to examine sixteen queues. With
the data organization shown in Figure 3(a), the same would
occur for the wide words accessed by the PIM.

The best data layout for a PIM, however, is shown in Fig-
ure 3(b), where the data structures are interleaved. A single
list entry has sixteen list items. All 256 bits of the PIM ac-
cess to memory is used and only three memory accesses
are needed to examine sixteen list items. This utilizes the
wide ALU more effectively because all of the data bits are
needed for matching. The obvious question is: could a pro-
cessor leverage the same data layout? The realistic answer
is no. In real usage, the list becomes fragmented and any
given list entry (with sixteen list items) would contain only
a few valid items. The PIM does not suffer from this lim-
itation because of the combination of multithreading and
extremely fine-grained synchronization. These two features
enable a small fraction of the processing power to be contin-
uously devoted to “list clean-up”. A “list clean-up” thread
traverses the list using locking at the level of the list entry
and compacts out the holes that have accumulated. Thus, at
any given time, only a small amount of fragmentation exists



anywhere in the list. Symmetric multi-threading (SMT) mi-
croprocessors, by contrast, do not have the fine-grained syn-
chronization primitives needed for a “list clean-up” thread.

Having multiple threads traversing the list using lock-
ing at the level of the list entry yields advantages in mes-
sage throughput as well. For each message, a commodity
processor must access the header over a bus with a 20 ns la-
tency. Then, it must traverse a linked list. The processor is
only free to move onto the next header when the list traver-
sal is done. In a multithreaded environment, however, one
thread can be responsible for reading headers and spawn-
ing additional threads to traverse the lists. This effectively
hides the latency of accessing the queue to retrieve a header.

5. Methodology

This research is focused on the solution to an interest-
ing problem: how can the latency and throughput impacts
of long posted receive queues be reduced? Exploring that
question required that a benchmark be developed to quan-
tify the problem. After developing a quantitative under-
standing of the issues, it was necessary to create an environ-
ment where solutions to the issue could be explored. This
environment included a model of the baseline NIC as well
as a model of the enhanced NIC.

5.1. Benchmarks

The primary motivation for this design was to reduce the
latency of and increase the throughput for messages when
long posted receive queues were present. The magnitude of
the problem was revealed in an earlier study [25] using a
newly designed benchmark. This benchmark was extended
to study the impacts of the using a PIM in the NIC.

The benchmark designed to measure the impact of
changes in the pre-posted receive queue length pro-
vides three degrees of freedom to enable the user to
measure the impacts of both the receive queue length (af-
fects caching) and of actual queue traversal (affects pro-
cessing time). This benchmark was also extended to
measure the impact of long posted receive queues on mes-
sage throughput. Using a traditional processor on a NIC,
only one incoming message can be handled at a time.
Thus, as the length of a queue grows, the number of mes-
sages that can be handled per second decreases. This shifts
the standard bandwidth curve to the right — at a given mes-
sage size, the bandwidth is decreased.

The message throughput can actually be decreased inde-
pendently of decreasing latency. A ����� latency that is con-
centrated in one atomic block implies a limit on message
throughput of one million messages per second. If that �����
latency can be broken into five independent pipeline stages,
then five million messages per second can be achieved. Al-

prepost traversed receives();
post 25 latency receives();
prepost untraversed receives();
barrier();
begin timer();
send 25 messages();
wait for 25 responses();
end timer();
clear receives();

(a)
prepost traversed receives();
post 25 latency receives();
prepost untraversed receives();
barrier();
wait for 25 messages();
send 25 responses();
clear receives();

(b)

Figure 4. Pseudo-code for pre-posted queue
impact benchmark: (a) node 0, and (b) node 1

ternatively, if five parallel processing units can be provided,
the same effect can be achieved. To measure this effect, it is
necessary to have more than one message in flight. Thus, the
benchmark from [25] was modified to have multiple mes-
sages (25) in flight. The modifications to the benchmark are
shown in Figure 4. This scenario is reasonable for applica-
tions that have long posted receive queues, especially if they
would normally communicate with multiple neighbors.

5.2. Simulation Environment

System-level simulation used a simulator based on
Enkidu [21], a component-based discrete event simula-
tion framework. This simulator was originally designed to
model a homogeneous sea of PIMs as a supercomputer. To
simulate a more traditional system with commodity pro-
cessors for both the host and the NIC, sim-outorder
from the SimpleScalar [8] tool suite was integrated into
this framework. In addition, a network model was needed.
For a simple two node benchmark, the network was mod-
eled as a point-to-point connection with a fixed latency.
For the NIC, components representing DMA engines were
added. Properly modeling the interaction with the host pro-
cessor also required a memory controller, DRAM chips,
and a simple model of the interface between the host pro-
cessor and NIC. To maximize fidelity, the memory hierar-
chy was modeled to include contention for open rows on
the DRAM chips.

Both the NIC and the host processor used the PowerPC
ISA, augmented with a basic subset of the Altivec [11] vec-



Parameter CPU Conv. PIM
NIC

Fetch Q 4 2 1
Issue Width 8 4 1
Commit Width 4 4 1
RUU Size 64 16 NA
Integer Units 4 2 1
Memory Ports 3 1 1
L1 (Size/Assoc.) 64K/2 32K/64 4K/8 (I)
L2 512K none none
Clock Speed 2GHz 500MHz
Main Mem. Lat. 70-80 ns 110-120 ns
ISA PowerPC PPC/Altivec
Net. Wire Lat. 200 ns
Net. Wire BW 3 GB/s

Table 1. Processor Simulation Parameters

tor instruction set. The semantics of this Altivec subset were
changed to allow 256-bit vectors. Only six instructions were
used (load vector, store vector, copy vector, compare equal-
to, and vector bitwise AND) and only 8 vector registers
were used.

5.3. Processor Models

The main processor was parameterized to be similar to
a modern high-performance processor, such as an AMD
Opteron. Although the Opteron is only six way issue, the
SimpleScalar tool suite prefers powers of two and so an ag-
gressive 8 way issue processor was modeled. The NIC pro-
cessor was parameterized to be similar to a processor in
higher-end network cards, such as the PowerPC 440 (see
Table 1) that is used in Red Storm. A simple bus on the
NIC connected the main processor with the DMA engine,
SRAM, and matching structure. This bus was simulated
with a 20 ns delay to access any components connected to
it. Overall, this model attempts to provide as reasonable of
a match to a real network as possible.

6. Results

Figure 5 compares the performance of a NIC using a con-
ventional processor with a NIC using two PIMs for the mes-
sage processing. The left side of the graph compares band-
width (a product of message throughput) while the right
side compares zero byte message latency. The PIM-based
solution shows dramatic improvements in bandwidth when
multiple messages are in flight. Even with a short posted re-
ceive queue, the overlap achieved by having two simple pro-
cessors and multiple threads with fine-grained locking can

be 10-20% on short messages. Moving to longer queues
rapidly exposes the advantage of a wide SIMD unit and
wide memory accesses and offers an order of magnitude
better performance. As the length of the message grows, the
time to DMA the message begins to hide the message pro-
cessing time; thus, both approaches have the same asymp-
totic bandwidth. In general, the PIM-based approach ramps
much more quickly.

The pure short message latency performance (the right
side of Figure 5) is a much more mixed result. At short
posted receive queues, the PIM loses dramatically. With
short queues, the processing of a single message cannot be
multithreaded effectively and cannot leverage wide mem-
ory accesses or wide ALU capabilities. Furthermore, there
is no significant parallelism (between multiple arriving mes-
sages) to exploit the capabilities of PIMS. As the queue
length grows, however, PIMs are able to better utilize their
unique architectural capabilities.

The relatively poor latency performance of the PIM is
explained by the simplicity of the PIM processor. With
only a single message, the PIM is unable to spawn multiple
threads to mask latency. Profiling indicates that during the
latency tests the PIM spends 75% of its cycles with only the
main thread active. The operations this thread performs can-
not be parallelized due to the ordering semantics of MPI and
to avoid deadlock. With only a single thread, the PIM is es-
sentially a single pipeline without branch prediction or the
ability to hide memory latency, competing against a dual-
issue pipeline with a single-cycle cache. This disadvantage
can negate much of the benefit of wide word comparison.

7. Conclusions and Future Work

Novel features that are core to many modern PIM archi-
tectures offer a dramatic advantage for the types of process-
ing found in an MPI library. Exploiting these processors in
the embedded environment found on high-performance net-
work interfaces is a natural progression from current NIC
architectures that use a traditional microprocessor. The ben-
efits are numerous. The latency for a single message with
long queues drops dramatically. More importantly, small
message bandwidth grows by 10% with extremely short
queues, ��� with moderate queue lengths, and ����� with ex-
tremely long queues. These advantages are conferred by the
inherent advantages in PIM architectures.

Going forward, we plan to further explore how to lever-
age the capabilities of PIMs and how to enhance PIMs in the
network interface. One avenue of exploration is more PIMs
on the NIC. A second potential avenue of exploration is en-
hancement to the PIM core to make single threaded perfor-
mance more competitive with PowerPC performance.



1

10

100

1000

10000

100 1000 10000 100000 1e+06

B
an

dw
id

th
 (

M
B

/s
)

Message Size (Bytes)

0 Preposted Receives
25 Preposted Receives
50 Preposted Receives

100 Preposted Receives
500 Preposted Receives

1000 Preposted Receives

1

10

100

10 100

La
te

nc
y 

(m
ic

ro
se

co
nd

s)

Percent of Queue Traversed

0 Preposted Receives
20 Preposted Receives
50 Preposted Receives

100 Preposted Receives
500 Preposted Receives

1000 Preposted Receives

(a) (b)

1

10

100

1000

10000

100 1000 10000 100000 1e+06

B
an

dw
id

th
 (

M
B

/s
)

Message Size (Bytes)

0 Preposted Receives
25 Preposted Receives
50 Preposted Receives

100 Preposted Receives
500 Preposted Receives

1000 Preposted Receives

1

10

100

10 100

La
te

nc
y 

(m
ic

ro
se

co
nd

s)

Percent of Queue Traversed

0 Preposted Receives
20 Preposted Receives
50 Preposted Receives

100 Preposted Receives
500 Preposted Receives

1000 Preposted Receives

(c) (d)

1

10

100

100 1000 10000 100000 1e+06

B
an

dw
id

th
 R

at
io

Message Size (Bytes)

0 Preposted Receives
25 Preposted Receives
50 Preposted Receives

100 Preposted Receives
500 Preposted Receives

1000 Preposted Receives

Relative PIM Performance Improvement

0
200

400
600

800
1000

Receives Preposted 0
20

40
60

80
100

Percent Traversed

0
2
4
6
8

10
12
14
16
18
20

Relative Performance

(e) (f)

Figure 5. Conventional processor-based bandwidth and latency curves ((a) and (b)); PIM based-
bandwidth and latency curves ((c) and (d)); Ratio between the two ((e) and (f))



References

[1] R. Alverson. Red Storm. In Invited Talk, Hot Interconnects
10, August 2003.

[2] N. J. Boden, D. Cohen, R. E. F. A. E. Kulawik, C. L. Seitz,
J. N. Seizovic, and W.-K. Su. Myrinet: A gigabit-per-second
local area network. IEEE Micro, 15(1):29–36, Feb. 1995.

[3] R. Brightwell and K. D. Underwood. An analysis of NIC
resource usage for offloading MPI. In Proceedings of the
2004 Workshop on Communication Architecture for Clus-
ters, Santa Fe, NM, April 2004.

[4] J. Brockman, P. Kogge, S. Thoziyoor, and E. Kang. PIM
lite: On the road towards relentless multi-threading in mas-
sively parallel systems. Technical Report TR-03-01, Com-
puter Science and Engineering Department, University of
Notre Dame, February 2003.

[5] J. B. Brockman, P. M. Kogge, V. Freeh, S. K. Kuntz, and
T. Sterling. Microservers: A new memory semantics for mas-
sively parallel computing. In ICS, 1999.

[6] J. B. Brockman, S. Thoziyoor, S. K. Kuntz, and P. M.
Kogge. A low cost multithreaded processing-in-memory
system. In 3rd Workshop on Memory Performance Issues
(WMPI), 2004.

[7] D. Buntinas, D. K. Panda, and P. Sadayappan. Fast NIC-
based barrier over Myrinet/GM. In Proceedings of the In-
ternational Parallel and Distributed Processing Symposium,
April 2001.

[8] D. Burger and T. Austin. The SimpleScalar Tool Set, Version
2.0. SimpleScalar LLC.

[9] W. J. Camp and J. L. Tomkins. Thor’s hammer: The first ver-
sion of the Red Storm MPP architecture. In In Proceedings
of the SC 2002 Conference on High Performance Network-
ing and Computing, Baltimore, MD, November 2002.

[10] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E.
Schauser, E. Santos, R. Subramonian, and T. von Eicken.
LogP: Towards a realistic model of parallel computation. In
Proceedings 4th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 1–12, 1993.

[11] IBM Microelectronics Division. PowerPC Microproces-
sor Family: Altivec Technology Programming Enviornments
Manual. IBM, 2.0 edition, July 2003.

[12] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam,
P. Pattnaik, and J. Torrellas. FlexRAM: Toward an advanced
intelligent memory system. In Proceedings of 1999 IEEE In-
ternational Conference on Computer Design, Austin, Texas,
USA, Oct. 1999.

[13] P. M. Kogge, S. C. Bass, J. B. Brockman, D. Z. Chen, and
E. H. Sha. Pursuing a petaflop: Point designs for 100TF com-
puters using PIM technologies. In 6th Symosium on Fron-
tiers of Massively Parallel Computation, Annapolis, MD,
Oct. 1996.

[14] A. B. Maccabe, W. Zhu, J. Otto, and R. Riesen. Experi-
ence in offloading protocol processing to a programmable
NIC. In IEEE International Conference on Cluster Comput-
ing, September 2002.

[15] R. P. Martin, A. M. Vahdat, D. E. Culler, and T. E. Ander-
son. Effects of communication latency, overhead, and band-
width in a cluster architecture. In Proceedings of the 24th
Annual International Symposium on Computer Architecture,
June 1997.

[16] Message Passing Interface Forum. MPI: A message-passing
interface standard. The International Journal of Supercom-
puter Applications and High Performance Computing, 8,
1994.

[17] A. Moody, J. Fernandez, F. Petrini, and D. K. Panda. Scal-
able NIC-based reduction on large-scale clusters. In Pro-
ceedings of the ACM/IEEE SC2003 Conference, November
2003.

[18] R. C. Murphy and P. M. Kogge. Trading bandwidth for la-
tency: Managing continuations through a carpet bag cache.
In Proceedings of the International Workshop on Innovative
Architecture 2002 (IWIA02). IEEE Computer Society, Jan-
uary 10-11, 2002.

[19] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Kee-
ton, C. Kozyrakis, R. Thomas, and K. Yelick. A case for in-
telligent DRAM: IRAM. IEEE Micro, April, 1997.

[20] F. Petrini, W. chun Feng, A. Hoisie, S. Coll, and E. Fracht-
enberg. The Quadrics network: High-performance cluster-
ing technology. IEEE Micro, 22(1):46–57, January/February
2002.

[21] A. Rodrigues. Enkidu discrete event simulation framework.
Technical Report TR04-14, University of Notre Dame, 2004.

[22] A. Rodrigues, R. Murphy, P. Kogge, J. Brockman,
R. Brightwell, and K. Underwood. Implications of a PIM ar-
chitectural model for MPI. In Proceedings the 2003 IEEE
Conference on Cluster Computing, December 2003.

[23] T. Sterling and H. Zima. Gilgamesh: A multithreaded
processor-in-memory architecture for petaflops computing.
In In Proceedings of the SC 2002 Conference on High Perfor-
mance Networking and Computing, Baltimore, MD, Novem-
ber 2002.

[24] B. Tourancheau and R. Westrelin. Support for MPI at the
network interface level. In Recent Advances in Parallel Vir-
tual Machine and Message Passing Interface: 8th European
PVM/MPI Users’ Group Meeting, Santorini (Thera) Island,
Greece, Septermber 2001. Springer - Verlag.

[25] K. D. Underwood and R. Brightwell. The impact of MPI
queue usage on message latency. In Proceedings of the In-
ternational Conference on Parallel Processing (ICPP), Mon-
treal, Canada, August 2004.

[26] K. D. Underwood, K. S. Hemmert, A. Rodrigues, R. Mur-
phy, and R. Brightwell. A hardware acceleration unit for
mpi queue processing. In 19th International Parallel and
Distributed Processing Symposium (IPDPS’05), April 2005.

[27] J. Wu, P. Wyckoff, and D. K. Panda. High performance im-
plementation of MPI datatype communication over Infini-
Band. In Proceedings of the 18th International Parallel and
Distributed Processing Symposium, April 2004.

[28] W. A. Wulf and S. A. McKee. Hitting the memory wall:
Implications of the obvious. Computer Architecture News,
23(1):20–24, March 1995.


